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Abstract

Background: The problem of variable selection for risk factor modeling is an ongoing challenge 

in statistical practice. Classical methods that select one subset of exploratory risk factors dominate 

the medical research field. However, this approach has been criticized for not taking into account 

the uncertainty of the model selection process itself. This limitation can be addressed by a 

Bayesian model averaging approach: instead of focusing on a single model and a few factors, 

Bayesian model averaging considers all the models with non-negligible probabilities to make 

inference.

Methods: This paper reports on a simulation study designed to emulate a matched case-control 

study and compares classical versus Bayesian model averaging selection methods. We used 

Matthews’s correlation coefficient to measure the quality of binary classifications. Both classical 

and Bayesian model averaging were also applied and compared for the analysis of a matched case-

control study of patients with methicillin-resistant Staphylococcus aureus infections after hospital 

discharge 2011–2013.

Results: Bayesian model averaging outperformed the classical approach with much lower false 

positive rates and higher Matthew’s correlation scores. Bayesian model averaging also produced 

more reliable and robust effect estimates.

Conclusion: Bayesian model averaging is a conceptually simple, unified approach that produces 

robust results. It can be used to replace controversial P-values for case-control study in medical 

research.
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INTRODUCTION

In early 2016, the American Statistical Association (ASA) Board issued a policy statement 

on the use of P-values and statistical significance that was unprecedented. According to the 
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ASA board’s statement, scientific conclusions should not be based solely on whether or not 

P-values pass a threshold. The reason is that this practice “encourages the use of 

terminology such as significant/non-significant, and converts a probability into certainty” 

[1], which is contrary to the purpose of using statistics: to provide evidence incrementally 

for decision-making rather than make an immediate decision [2]. Bayesian probability is an 

alternative paradigm of statistical inference: while P-values quantify the probability of the 

data given the null hypothesis: P(D|H0), Bayesians calculate the probability of the 

hypothesis given the data: P(H1|D). Although far less used than P-values, Bayesian inference 

is more intuitive: it assigns a probability to a hypothesis based on how likely we think it to 

be true [2].

In this paper, we focus on model selection with a Bayesian approach. Model selection has 

posed significant challenges for many statisticians, numerous strategies have been developed 

[3–5] and yet no universal agreed-upon standard has emerged. In conventional model 

selection, a single model typically is selected based on P-values, and only those variables 

‘selected’ by the model are considered. Also, because a single universally approved model 

selection strategy is unavailable, different approaches are used, which can result in different 

subsets of variables selected in a final model and, in turn, different results and conclusions. 

Bayesian model averaging (BMA) is a solution that closes an important methodological gap 

and obviates the need for complicated or sometimes confused modeling strategies. Instead of 

focusing on a single model and a few factors, BMA considers all the models with non-

negligible probabilities and the posterior probabilities for all variables are summarized at the 

end.

A variable selection method is a way of selecting a particular set of independent variables 

for use in a regression model. Stepwise variable selection has been very popular for many 

years for its simplicity. However, stepwise selection applies methods intended for one test to 

many tests: as one author has stated, “the maximum F-to- enter statistic is not even remotely 

like an F-distribution”[6]; for a large enough data-set, all P-values would be ‘significant’ 

even for non-plausible variables. BMA could provide a way around these problems for better 

predictive power, effect estimation and hypothesis testing [7–10].

In recent years, investigators have applied BMA in numerous medical and epidemiological 

analytic studies. However, most of these investigations have used the Bayesian approximate 

computational approach [8, 9, 11], which is still model oriented and, according to O’Hara et 

al., is only feasible to use with a maximum of up to several dozens of candidate models [12]. 

Simulation is a more exact method for calculating model probabilities, and Markov chain 

Monte Carlo (MCMC) methods are the most common way to simulate from a posterior [13]. 

An MCMC algorithm was used to generate posterior distributions of parameters and 

marginal probabilities for selected models.

We applied this technique to simulated data as well as to data from a previously published 

medical research paper: a matched case control study for risk factors among patients with 

invasive Methicillin-Resistant Staphylococcus aureus (MRSA) infection after hospital 

discharge [14]. By comparing BMA with the classical approach, we aim to show the 

importance of accounting for model uncertainty, the need to replace P-values with 
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probabilities and to evaluate the feasibility of applying MCMC-based BMA to general 

medical research practice.

METHODS

Classical approach

In this paper, we use the forward, stepwise and backward variable selection approaches 

implemented by SAS 9.4,

Bayesian Model Averaging Approach

The BMA approach uses fundamental Bayesian methods as follows. Given the data D, if 

f(m) is the prior probability of model m out of a set of competing models M, the posterior 

probability is given by

f m D = f (m) f (D |m)
∑m ∈ M f (m) f (D |m) , m ∈ M

Where f(D|m) is the marginal likelihood calculated using f(D|m)= ∫f(D|βm, m)f(βm|m)dβm), 

f(D|βm) is the likelihood of model with parameter βm, and f(βm|m) is the prior of βm under 

model m [15]. The problem with this approach is that these integrals cannot be computed 

analytically in most case; the set of possible models M increases exponentially as the 

number of variables grows. For instance, the number of all possible models is equal to 230 = 

1,073,741,824 with only p = 30 variables, and the authors have been involved with many 

studies in which many more variables have been considered. The calculation or 

approximation of f(D|m) for all m ∈M becomes infeasible. Therefore, MCMC methods 

which generate observations from the joint posterior distribution f(m, βm|D) of (m, βm) have 

become popular to estimate f(m|D) and f(βm|m, D) recently.

In details, for a generalized linear model, if an indicator vector is used to represent specific 

sets of variables that are included among the possible sets of variables such that (γi = 1) or 

not included (γi = 0) in the model, the linear predictor can be written as

η = ∑
i = 1

p
γiXiβi

Where Xi is the design matrix and βi the parameter vector of the full model (including all p 

available variables in the linear predictor) related to the ith term and η is the dependent 

variable. The model selection process partitions β into (βγ, β\γ) corresponding to those 

components of β that are included (γi = 1) or not included (γi = 0). Hence the vector βγ 
corresponds to the active parameters of the model (βm), while β\γ corresponds to the 

remaining parameters, which are not included in the model defined by γ. In most cases, the 

prior information is not available, so it is necessary to specify the prior distribution to allow 

the data to determine which variables are important. In this study we used the popular 

Zellner’s g-prior with Gibbs variable selection due to its simplicity and efficiency [10].
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The g-prior for β is the multivariate normal distribution with μγ,β = 0, i.e.

β N p μγ, β, Tγ, β
−1

The prior for the inclusion indicator is defined as γj ~ Bernoulli(0.5) with an inclusion 

probability of 50%. The elements of mean μγ,β for all j = 0,1,…,p is defined as following:

μγ, β, j = 1 − γ j μβ j

For the prior precision matrix T, each element Tj,k is equal to the elements of matrix c−2 δ
−2XTX in the case where both variables Xj and Xk are included in the model. When at least 

one of them is not included in the model, then Tj,k = 0 for j ≠ k. Diagonal elements Tj,j 

denote the pseudo prior precision for γj = 0 that is when Xj is excluded from the model. 

Hence we set

T j, k =
γ jγk

nδ2 XTX jk + 1 − γ jγk I( j = k)Sβ j
2

with c2 = n (sample size) which means the prior has the equivalent weight of 1 observation, 

and δ2 ~ Inverse-Gamma(10−4, 10−4). The proposed μβ j
 and Sβ j

2  are estimated through 

maximum likelihood estimation of the full model with all variables included. The posterior 

distribution of β and γ are obtained through Gibbs sampling, which generates a sample from 

the distribution of each variable in turn, conditional on the current values of the other 

variables. The sequence of the samples constitutes a Markov chain, and the stationary 

distribution of that Markov chain is the sought-after joint distribution of P(β, γ). The details 

of this implementation can be found in the book by Ntzoufras[10] and the program was 

written in WinBugs [16] and R [10, 17, 18]. Finally, we monitored β and γ from the 

posterior distribution and summarized the results.

Simulation study

In accordance with the BMA approach we have outlined an illustrative example of its 

application using simulated data that resembles the matched case-control studies carried out 

in practice. We simulated data in a similar manner to what has been described by Viallefont 

et al. [19], in which the design of the simulated study was based on the literature review of 

the studies reported in the American Journal of Epidemiology in 1996 [19]. We modified 

simulations into a matched 1:2 case-control study for our study purpose. The number of 

variables initially under consideration was 32. Among these variables, the number actually 

associated with the health outcome, i.e., the typical dimension reported in the literature of a 

‘final model’ found for a case control study, was chosen as 10 (nominal significant) [19]. For 

the 10 variables designed to be associated with the health outcome, 5 were correlated with 

each other, and 5 were independent of each other. The remaining 22 variables not related to 

the health outcome were correlated with each other, factors associated with the health 

Mu et al. Page 4

Epidemiol Biostat Public Health. Author manuscript; available in PMC 2019 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outcome or were independent. The goal was to simulate the scenario where ‘explanatory’ 

variables are recorded, as in a typical epidemiological study. All variables were 

dichotomized for simplicity purpose, which is also common practice in logistic regression 

[19]. The model can easily be extended to include variables of any types. We generated a 

matrix having 50,000 rows by 33 columns to represent a population under study, with 32 

columns representing variables and one column to represent the health outcome. The 

correlated variables were simulated with correlated probabilities in the range of [0.3–0.6]. 

The variables linked to outcome were simulated with absolute odds ratios in the interval 

[1.4, 3.5] and exposure rates in the range of [0.2, 0.6], while the odds ratio for remaining 

variables were set to 1. The outcome variable was simulated using the following equation:

log  Pr (Y = 1)
Pr(Y = 0) = β0 + ∑

i = 1

p
Xiβi

with β0 was adjusted so as to yield the prevalence rate of approximately 1% to reflect the 

rare disease often found in epidemiological study, with βi (i = 23,…, 32) associated with Y 
as mentioned above. From the population 50,000, we randomly selected 200 cases and 400 

control to form a 1:2 matched case-control study, and 10 such case-control data-sets were 

generated.

Analysis

The model selection results may or may not match the nominal status of the variables. In this 

setting:

• True positive (TP): nominal significant variable correctly selected into model

• False positive (FP): nominal non-significant variable incorrectly selected into 

model

• True negative (TN): nominal non-significant variable correctly not selected into 

model

• False negative (FN): nominal significant variable incorrectly not selected into 

model

The above four outcomes can be formulated in a 2 × 2 table called a confusion matrix. Based 

on the cell values of the confusion matrix, we calculated the false positive rate = FP/ (FP

+TN), and false negative rate = FN / (TP+FN). To describe the confusion matrix of true and 

false positives and negatives by a single number, we used the Matthews correlation 

coefficient (MCC) [20], which is generally regarded as being one of the best such measures 

[21]:

MCC = TP × TN − FP × FN
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The MCC is in essence a correlation coefficient between the observed and predicted binary 

classifications; it returns a value between −1 and +1. A coefficient of +1 represents a perfect 

prediction, 0 no better than random prediction and −1 indicates total disagreement between 
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prediction and observation. For 10 data samples and 32 variables, we have 320 P-values to 

consider in the classical approach and 320 γ for BMA. The conventional rule of thumb for 

interpreting γ is that if it is less than 50%, there is no evidence for Xγ being a risk factor; if 

it is between 50% and 75% there is weak evidence for Xγ being a risk factor; if it is between 

75% and 95% there is positive evidence, between 95% and 99% the evidence is strong, and 

beyond 99% the evidence is very strong [22]. Therefore we considered P-values significant 

at P < 0.05 for the classical approach and mean of γ > 75% for BMA, which is equivalent to 

P < 0.05 in classical approach [19]. In addition, for nominal significant variables, we also 

considered the ‘weak evidence’ with γ > 50% for BMA and P < 0.1 for classical approach. 

In this paper, all the P-values are two-sided.

MRSA matched case-control study

To demonstrate the application of BMA to epidemiological research, we re-analyzed a case-

control study for invasive MRSA infections, for which the original data analysis was 

reported by Epstein et al [14]. A case was defined as MRSA cultured from a normally sterile 

body site in a patient discharged from a hospital within the prior 12 weeks. For each case 

patient, two controls were matched for hospital, month of hospital discharge, and age group. 

Potential risk factors present during the hospitalization and post-discharge period were 

collected. A total of 194 case patients and 388 matched controls were enrolled. The Centers 

for Disease Control and Prevention review boards approved the study. Because the study 

posed no greater than minimal risk to participants, a waiver of informed consent was granted 

to review medical records in both the hospitals and nursing homes. Verbal consent was 

obtained from all participants who were interviewed.

In the original published paper, the data set was analyzed as a matched set. The classical 

approach in the paper was based on Hosmer’s book ‘Applied logistic regression’ [3], and the 

details of modeling strategies can be seen in the original paper [14]. As a selection strategy, 

they first performed conditional logistic regression for all 32 variables independently. 

Conditional logistic regression with backward selection was then performed for the set of 

variables with P ≤ 0.25 from univariable regression, at the end, the variables with P > 0.25 

were also entered to test whether they become significant after controlling for other 

confounders. The authors did not include any interaction terms, and did not focus on any 

specific factor of the 32. The definition of the variables can be seen in the original paper 

[14]. We reanalyzed the data using BMA with the same data definition from [14]. We also 

did not consider any interaction terms and used conditional logistic regression to analyze the 

data.

RESULTS

Table 1 summarizes the results of running logistic regression on the entire simulated 

population with all 32 variables included. Coefficients and P-values are shown for X23-X32 

which are designed to be correlated with Y; P-values were not significant for X1-X22 as 

designed (not shown in the table). When running the full model with all 32 variables for 10 

matched case-control subsets, we noticed that 22 out of 220 (10%) variables designed not to 

be significant (nominal non-significant) at the p < 0.05 level became significant, and only 75 

Mu et al. Page 6

Epidemiol Biostat Public Health. Author manuscript; available in PMC 2019 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



out of 100 (75%) variables designed to be significant (nominal-significant) remained 

significant in the 10 subsets.

We analyzed the 10 matched case control data-sets using the classical approach and BMA. 

The total number of variable selected by BMA was 69 (TP+FP) with γ > 75% and 85 with 

additional nominal significant variables included at γ > 50%. The total number of variables 

selected by stepwise, forward and backward selection was 84, 86 and 91 for P < 0.05 and 96, 

96 and 95 with nominal significant variables included at P < 0.1.

Table 2 shows that for P < 0.05 / γ> 75%, BMA has a much lower false positive rate of 2% 

compared to an average of 7% from classical approach. BMA has a slightly higher false 

negative rate of 35% compared to an average of 28% from classical approach. With weak 

evidence considered for X23-X32, BMA has lower false positive as well as false negative rate 

compared to the classical approach: 2% vs. 8% and 19% vs. 22%, respectively. If we use 

MCC as a single score to evaluate the overall performance for both approaches. BMA 

outperformed classical approaches with higher MCC of 0.71 vs. 0.69 (average) for strong 

evidence, and 0.83 vs. 0.71 for including nominal significant variables with weak evidence.

In Figure 1, the estimated effects were visualized by different methods for the variables 

designed to be associated with outcome (X23-X32). The bottom and top of the box represent 

the minimum and maximum of the effect estimates, respectively. The line inside the box 

represents the median. The number on the top of each box represents the variable selection 

frequency. The selection frequency is based on P < 0.05 / γ > 75%, the black dots are the 

“true” effects from the population. They have been repeated for each box for comparison 

purposes. As we can see, for all methods, the variables with larger effects tended to be 

selected more frequently (X23, X24, X26, X27, X29), and the ranges of the estimates cover the 

true effects; when the effects are small, the variables are selected less frequently, and the 

ranges of the boxes would not cover the true effects or barely cover them (X25, X28, X31, 

X32). Compared to the classical approaches, BMA provides tighter (X23, X27, X28, X29, 

X31) or comparable range of estimates around the true effects (X24, X26, X30). For X32, all 

classical method estimate this effect as negative, while BMA estimates it correctly as 

positive.

Table 3 shows the results of BMA vs. classical approach for MRSA matched case-control 

dataset. As we can see, for γ > 75%, the 5 variables selected by BMA were all selected by 

classical approach; for γ > 50%, BMA would include all the variables selected by classical 

approach except admission diagnosis. In addition, BMA also included length of hospital, 

antibiotic exposure, dialysis and other wound during post-discharge period. The collection 

of model selected by BMA is 17,944 out of 232 = 4,294,967,296 possible models.

PERFORMANCE

The program was executed on a laptop with Intel® Core™ i5–5300 CPU @2.30GHz, 

2.29GHz dual processors, 8.00GB installed memory (RAM) and 64-bit operating system. 

The convergence diagnostics were based on 1) Autocorrelation of Markov chain (ρlag < 30); 

2) Gelman-Rubin diagnostic R < 1.0001  [27]; 3) Markov chain errors (< 1% of standard 
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errors of model parameters for all β and γ) [24]. Using the MRSA research data as an 

example, convergence was observed with 150,000 iterations, for three chains of 50,000 

iterations each. On average, each iteration required about 0.07 seconds, so 150,000 iterations 

took approximately 3 hours.

DISCUSSION

The results of our analysis underscores the possibility that popular model development 

strategies for matched-case control study can produce parameters that show strong 

associations with the outcome only by chance. Our simulation study showed that about 10% 

of parameters that were designed to have no association with the outcome in a population of 

50,000 became significant in the randomly selected subset of 600 (false positive variables). 

The classical model strategy selected the false positive variables into a final model on an 

average of 7% of the time, while BMA selected them 2% of the time. BMA has slightly 

higher false negative rate of 35% compared to an average of 28% from classical approach. 

Alternatively, if we treat nominal significant variables as known risk factors supported by 

literature review and relax the selection standard for BMA to γ > 50%, the correspond false 

negative rate dropped to 19% and the false positive rate remained the same. There is no 

universal agree on standard on how to relax the P value for the classical approach, if we use 

P < 0.1 for the comparison purpose, the classical approach has both higher false positive rate 

and false negative rate compared to BMA (Table 2). We also introduced MCC, a single score 

to evaluate the overall performance of the binary classification, the results showed that BMA 

outperformed classical approach under both selection cut point of P < 0.05 / γ > 75% and 

additional P < 0.10 / γ > 50% for nominal significant variables. For variables designed to be 

associated with outcome, BMA produced better estimates with tighter ranges around the true 

values, and most importantly, BMA consistently quantified the effect with correct signs (+/

−), while classical approaches reversed the sign of one effect from positive to negative 

(Figure 1). This demonstrates the potential shortcomings of depending on one model without 

taking into account the uncertainty associated with the selection of the model itself. Another 

shortcoming is that several different models may all seem reasonable given the data, in our 

simulation study, different subset of variables were selected by stepwise, forward and 

backward selection (Table 2, FP+TP), arbitrarily selecting a single model can lead to biased 

inference on the effect of interest.

We applied BMA to data from a published medical research study and compared the results 

to the original analysis. Because all the variables under consideration were based on a 

literature review or biological/clinical plausibility, we used γ > 50% as an indicator of 

association to outcome. As a result, BMA selected seven out of eight variables in the final 

model of classical approach. The only exception was the variable “admission diagnosis”, a 

categorical variable created by a data-driven process that collapsed 16 different diagnoses 

into two categories, each of which included very heterogeneous diagnoses. This variable was 

selected into final 8 parameter model by the classical approach, while the selection 

probability for this parameter was only 24% based on BMA. Furthermore, BMA detected 

evidence of association between the following four variables with the outcome: length of 

hospital stay, other wound, dialysis and total antibiotic exposure during post-discharge 

period. These variables have found to be risk factors for MRSA in other literature [25–28]. 
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They were collected and tested but did not enter the final model with the P < 0.05 cut point. 

As a result, they were not treated as risk factors for informing strategies to prevent MRSA, 

although other literature provides evidence that they may be important factors.

We have proposed BMA as a comprehensive way to account for model uncertainty. Instead 

of relying on one model, the inference was carried out based on hundreds of thousands 

models and the results are more reliable and robust. Another advantage of BMA is that it 

provides a transparent interpretation through the variable’s posterior selection probability: 

the higher the probability, the stronger the association between the variable and the health 

outcome. In practice, this information can help to focus the limited resources on what 

matters the most. In contrast, classical P-values is hard to interpret, for example, the 

expression “fail to reject the null hypothesis” doesn’t mean to “accept the null hypothesis”, 

either, as a result, P-values are one of the most misunderstood and misinterpreted quantities 

in research [4].

In summary, BMA eliminates the need for complicated model selection and cross validation 

strategies that can lead to different results and conclusions. Our study demonstrates that 

BMA is a conceptually simple, unified approach that produces robust results. Bayesian way 

of dealing with the model uncertainty problem has been found to be the only way[14]. 

Compared to the classical approach, BMA can be both highly specific and sensitive if 

coupled with proper use of prior information. Another advantage is that results are easy to 

interpret. With advances in computer technology and computing power, a laptop alone can 

be used with ease for a typical medical research study. Computations involving hundreds of 

observations and dozens of variables can be completed within hours.

Bayesian inference has been controversial because it uses the prior distribution, which is 

subjectively determined by the user. However, prior can be totally non-informative, or 

equivalent to the weight of 1 observation in our study, which has little influence on the 

posterior estimates for the typical medical research with hundreds of thousands observations. 

A word of caution is that BMA is not a substitute for careful incorporation of available 

scientific knowledge or for careful data analysis. This together can lead to a set of possible 

confounders, or potential risk factors for further consideration with BMA.
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FIGURE 1. Estimated effects and variable selection frequency, BMA vs. classical approach
Abbreviations: BMA: Bayesian model averaging; BACK, backward selection; For: forward 

selection; STEP: stepwise selection
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TABLE 1.

Design of the Simulations: Correlation and Strength of the Simulated Associations

VARIABLES INDEPENDENT OF Y

X1–10 Independent of each other

X11–15 Correlated with each other

X16–20 Correlated with each other

X21 and X22 Correlate with X23–27

VARIABLES ASSOCIATED WITH Y

βi OR P

Correlated with each other

X23 1.11 3.03 <0.0001

X24 −0.79 0.45 <0.0001

X25 0.35 1.42 <0.0001

X26 −0.97 0.38 <0.0001

X27 −1.24 0.29 <0.0001

Independent of each other

X28 −0.47 0.63 <0.0001

X29 0.89 2.44 <0.0001

X30 −0.59 0.55 <0.0001

X31 −0.54 0.58 <0.0001

X32 0.35 1.42 <0.0001

Abbreviations: OR, odds ratio.
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